

Recurrence-free unconstrained handwritten text recognition using gated fully convolutional network

Denis Coquenet ^{1,3}, Clément Chatelain ², Thierry Paquet ³

LITIS

¹Normandie Université, Normandie, France 2 INSA de Rouen, Normandie, France ³Université de Rouen, Normandie, France

ICFHR, September 2020

Deep learning handwriting recognition system

Constraints

- Images (input) of variable size
- Sequence of characters (output) of variable length

Sequence alignment

Connectionist Temporal Classification (CTC) [\[Graves2006\]](#page-13-1)

State of the art

Recurrent models (recurrent layers)

- Multi-Dimensional Long-Short Term Memory (MDLSTM) [\[Pham2014;](#page-13-2) [Voigtlaender2016\]](#page-13-3)
- Convolutional Neural Network + Bidirectional Long-Short Term Memory (CNN+BLSTM) [\[Puigcerver2017\]](#page-14-0)

Non-recurrent models

- Convolutional Neural Networks (CNN) [\[Ptucha2018\]](#page-14-1)
- Gated Fully Convolutional Network (GFCN) [\[Yousef2018;](#page-14-2) [Ingle2019\]](#page-15-1)

Attention models (recurrent process)

• Encoder-decoder architecture with soft attention [\[Chowdhury2018;](#page-14-3) [Michael2019\]](#page-15-2)

Our GFCN model

- \bullet G (Gate)
- DSC (Depthwise Separable Convolution) \bullet
- CB (Convolution Block) = Conv + Conv + Instance Norm. + Dropout
- GB (Gate Block) = $DSC + DSC +$ Instance Norm. $(+)$ MaxPooling) + Gate + Dropout
- $(H, W, C) = (Height, Width, Feature maps)$
- $N =$ charset size $(+ 1$ for the CTC blank)

Details

Architecture

- Deep: 22 convolutional layers
- Parameters: 1.4 M
- Receptive field: (196, 240)
- Input: Fixed-height image (64px) preserving the original width

Hyperparameters

- **•** Framework: Pytorch
- Optimizer: Adam(0.0001)
- loss: CTC

Datasets

• grayscaled line text images (300dpi)

Normalization techniques - visualisation

Image from [\[Wu2018\]](#page-14-4)

- N: Mini-batch size
- H: Height 0
- W: Width
- C: Feature maps

Normalization techniques - results

Table: Effect of type of normalization for our GFCN with the RIMES dataset (for a mini-batch size of 2). CER is computed on the valid set.

Impact of ending blocks

Table: Impact of the receptive field on the IAM dataset. CER is computed over the valid set.

Table: Comparative results on the IAM dataset without LM, lexicon nor data augmentation.

RIMES

Table: Comparative results on the RIMES dataset without LM, lexicon, nor data augmentation.

Conclusion

Our model

- A recurrent-less fully convolutional network
- Deep, with a large receptive field
- Competitive results on both RIMES and IAM datasets

Future works

Improving the performances

• Implement a data augmentation strategy

Toward paragraph-level text recognition

Seq2Seq model with attention [\[Bluche2016;](#page-13-6) [Bluche2017\]](#page-14-5)

Standard Convolution

Image from <https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/>

Depthwise Separable Convolution

First, merge repeat characters.

Then, remove any ϵ tokens.

The remaining characters are the output.

Image from <https://distill.pub/2017/ctc/>